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Abstract: - In the current context of climate change and its impact on human and natural resources, remote 
sensing has some advantages for combating extreme events, especially in pasture arid Morocco. Assessing 
quality of remote sensing data is an essential step in pastoral areas when droughts that have a significant impact 
on productivity. In order to provide a method that gives a description of future drought yield situation we have 
studied two types of regression established between rainfall data measured by station, soil moisture index 
(SWI), Normalized difference vegetation index (NDVI), Fraction of Absorbed Photosynthetically Active 
Radiation (FAPAR) and dry matter productivity (DMP) from MetOp-A / ASCAT, eMODIS-TERRA, SPOT 
VEGETATION and PROBA-V satellites 30 km from 2007 to 2017. The main objective of this study is to test 
accuracy of these data used for claim not only areas affected by drought, but also areas likely to be affected.  
The results obtained show that models based on polynomial regression of NDVI, FAPAR, DMP are most 
consistent and accurate for estimation of herbaceous biomass from rainfall. Using of SWI index must be 
justified according to averages values. However, drought can be predicted based on results of strong 
correlations between soil moisture and vegetation index and rainfall anomalies. 
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1 Introduction 

Rangelands are arid or semi-arid ecosystems, 
where rainfall is irregular and evapotranspiration is 
high. These lands are composed of natural 
vegetation that depends on rainfall and soil moisture 
(Le Houérou, 1992 [1], Mahyou et al., 2016	 [2], 
Chen 2014	 [3]). Dryland ecosystems cover about 
41% of area and more than 2 billion people, 90% of 
them in developing countries. Recent studies on 
dynamics of natural vegetation show a reduction of 
steppes and a change in their floristic composition 
and a decrease in productivity of rangelands. 
Overgrazing has an impact on floristic composition 
and it also causes a decrease in perennial vegetation 
cover and a development of invasive plant species 
(Mahyou et al., 2016 [2]). This precarious situation 
worsens during periods of severe drought where a 
significant water deficit is observed. Water 
availability per capita is only two-thirds of 
minimum level of human well-being. Vulnerability 
of populations to extreme hydrologic events is high 
(Douglas et al., 2008 [4], Di Baldassarre et al., 2010 
[5]). While, Moroccan agriculture and pastures 
suffer from severe water resource deficits during 
prolonged droughts in recent decades (Born et al., 

2008 [6], Chbouki et al., 1995 [7], Sowers et al., 
2011 [8], Swearingen 1992 [9]). Understanding 
historical occurrence of drought and its impacts, as 
well as monitoring current drought conditions, 
allows the implementation of risk management 
strategies in pastoral areas. The use of remote 
sensing data has a number of advantages in 
determining the impact of drought on vegetation. 

The information covers entire territory and 
repetition of images allows multi-temporal 
monitoring and estimation of spatio-temporal 
impact of drought during vegetation growth stage 
(Kogan, 2002 [10]). The main advantages of remote 
sensors are ability to monitor large areas and capture 
spatial variability of Earth's surface, as well as 
repeatability of data collection that provides 
opportunity for index analysis. The interest of 
remote sensing for rangelands lies in fact that 
several biophysical variables representative of state, 
development of vegetation are accessible. Numerous 
indices have been developed to describe vegetation 
cover while considering atmospheric effects or soil 
type (Morel, 2014 [11]). Empirical relationships 
were the first form of model used to estimate returns 
from remote sensing data. They highlight a link 
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between vegetation spectral signature and an 
ecophysiological variable of interest. Rainfall 
derived from satellite images and global circulation 
models are frequently used for vegetation 
monitoring in many parts of Africa. The low density 
of rainfall stations makes calibration and validation 
of modeled data almost impossible (Rojas et al., 
2011 [12], Balaghi et al., 2012 [13]). However, at 
regional scale rainfall stations are available and 
allow monitoring of agricultural and pastoral 
production and therefore ensure food security. Local 
water balance also depends on evaporation, storage 
of soil moisture and runoff versus precipitation. Soil 
moisture index has the advantage of quantitatively 
describing both wet and dry episodes (Chen, 2014 
[3]) and tracking photosynthesis and plant 
productivity (Xin et al., 2013 [14], Tao et al., 2005 
[15]). Many recent studies have attempted to 
compare and map spatial estimates and 
measurements of soil moisture in field (Hunt et al., 
2009 [16], Zribi et al., 2010 [17], Guerfi et al., 2015 
[18], Merlin 2016 [19]).  

Drought and vegetation studies generally suggest 
that there are relationships at global level that hide 
several regional responses at smaller spatial scales. 
It is therefore important to note that not only does 
weather variability play a role, but also general 
sensitivity or adaptation of vegetation to drought 
stresses (Chen, 2014 [3]). NDVI and FAPAR were 
derived from remote sensing and are used in 
vegetation monitoring and pasture yield prediction 
(Kogan et al., 2013 [20], Doraiswamy et al., 2003 
[21], Prasad et al., 2006 [22], Duveiller et al., 2012 
[23]). Many authors have studied the relationship 
between FAPAR and DMP (Fensholt et al., 2004 
[24]; Goward et al., 1992 [25]; Lind et al., 1999 
[26]), which has been found to be generally linear 
for vegetation. 

 

2 Materials and Methods 

 

2.1 Study area  

The sites used are located in communes of Ain 
bni mathar, Tendrara and Bouarfa in eastern 
Morocco (Figure 1). These rangelands consist of 
relatively natural vegetation with an area of 30 km 
are representative of main geomorphological and 
facies vegetation types of study area. Mean annual 
precipitation is low and irregular, in order of 148 
mm with a minimum of 74 mm and a maximum of 
311 mm. Soil level and type are determining factors 
of soil moisture. Overall rangeland productivity is 
low, although there are indigenous plants and 
animal resources, including perennial Stipa 
tenacissima grass forage resources. Population is 
about 100000 inhabitants, 80% of whom are rural. 
pastoralism, based mainly on sheep and goats, is 
main economic activity of region (Mahyou et al., 
2018 [27]).  

In fact, Stipa tenacissima is indifferent to 
chemical composition of soil. This species can grow 
on calcareous soils and sands. It thrives well on 
rocky, shallow, well-drained soils and avoids clays 
and does not support salty soils and undrained land. 
Steppe with white sagebrush is found in unsalted 
depressions and glacis with a medium-to-fine-
textured clay-loam soil, with pores clogged on 
surface, where water is retained for a shorter or 
longer time, which has effect of increase congestion 
time. These two species have stages where these 
two climax species are progressively replaced by 
species of degradation, such as Noaea mucronata, 
Atractylis serratuloides, Peganum harmala and 
Anabasis aphylla. Desert Steppes cover fairly large 
areas in Bouarfa. Among the main steppes 
encountered, there are steppes of Fredolia aretioids, 
and Haloxylon scoparium. It should also be noted 
that perennial vegetation has the most significant 
action on soils of highlands without reliefs and 
rivers. Indeed, when perennial vegetation is 
degraded or disappeared, there is a constant 
regression of superficial horizons (MARA, 1992 
[28], Mahyou et al., 2010a [29]).
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Fig 1. Location map of estimating remote sensing indices and rainfall stations at three rural communes in 
eastern Morocco (S1: Ain Bni Mathar, S2: Tendrara, S3: Bouarfa).

2.2 Remote sensing data and Rainfall 

Rainfall studied here is derived from three 
stations located in rural communes (Ain Bni Mathar, 
Tendrara, and Bouarfa). However, four types of 
indices from 360 images of a WGS-84 projection 
whose spatial and temporal characteristics are 
shown in (Table 1) are used in this work. 
Copernicus Global Land Service (CGLSSWI) soil 
moisture data for 2007-2017 version 3 are from 
MetOp-A / ASCAT with spatial resolution of 11 km 
and geographic coordinates (Long / Lat). The Soil 
Moisture Index (SWI) is physically defined as the 
moisture content of the soil at 1 meter from the 
ground. This index is relatively related to wilt level 

and field capacity. Its unit is percentage (%) and his 
physical range value varies from 0 to 100. The 
vegetation index (NDVI) is calculated from MODIS 
L1B Terra surface reflectances and corrected using 
the MODIS algorithms by United States Land 
Observation and Resources Center (EROS) to 
produce NDVI emodis. Two series of data of 
absorbed photosynthetically active radiation and dry 
matter productivity derived from Copernicus World 
Terrestrial Service (CGLSFAPAR and CGLSDMP) 
from 2007 to 2017 version 2 which corresponds to 
values of reflectance absorbed by canopy and mass 
flows of carbon are thus used. 

 

 

Data Formula    References  

CGLSSWI  

 

SWI (tn) =∑n
i ms (ti)etn-ti/T/∑n

ietn-ti/T    Pour ti ≤ tn 

tn : Observation times of current measurement, 

(Wagner et al., 1999 [30]) 
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Table 1. Characteristics of spatial data "Soil moisture (SWI), vegetation index (NDVI), photosynthetic fraction 
(FAPAR), dry matter productivity (DMP)" used in this study. 

 

 

2.3 Spatial and Statistical Analysis  

Soil moisture (SWI), vegetation index (NDVI), 
absorbed active photosynthetic fraction (FAPAR) 
and dry matter productivity (DMP) data from 
September 2007 to August 2017 are extract with a 
raster of 30 km resolution at three sites (Ain bni 
mathar, Tendrara and Bouarfa) with software for 
processing and interpreting series of images derived 
from remote sensing (SPIRITS). This tool includes 
many image processing features derived from low 
resolution sensors such as SPOT-VEGETATION, 
NOAA AVHRR, METOP-AVHRR, TERRA-
MODIS, ENVISAT-MERIS and MSG-SEVIRI. It 
can be used to perform and automate spatial and 
temporal processing steps over time series and to 
extract spatially aggregated statistics. Many range of 
operations facilitated by this program, also indices 
and their anomalies can be analyzed statistically and 
mapped quickly (Eerens et al., 2013 [36]). 

In this study, we propose a methodology that 
allows rapid assessment quality of index estimates  

 

 

(SWI, NDVI, FAPAR, DMP) based on ANOVA 
analysis performed for all variables and rainfall 
stations in each site. We are also investigating 
whether SWI soil moisture index averages 
(November to February), NDVI, FAPAR and DMP 
(February, March and April) and cumulative 
precipitation totals can be used ( from September to 
March) according to adjustment functions in order 
to deduce which one (s) best adapts to estimation of 
yields and others in these arid and semi-arid 
ecosystems (Figure 2) . Thus in the case of 
prediction of the drought we calculate and compare 
anomalies calculated with the Wilcoxon / Kruskal-
Walis test on JMP according to the following 
formula (1): 

ti : Observation times of previous measurements.

NDVI-eMODIS 

 

NDVI = (NIR - R)/ (NIR + R) 

Were NIR is the Near infrared and R is the Red. 

(Jenkerson et al., 2010 [31]) 

CGLSFAPAR  FAPAR = Reflectance absorbed by green part of vegetation. (Prince, 1991 [32] ; Verger et al.

2015 [33]) 

CGLSDMP  DMP = R.c.fAPAR.LUEc.T.CO2 AR[.RES] 

LUE :  Efficiency of use of light , 

ɛLUE :  Optimum use efficiency, ɛT :  Standardized 

temperature effect, ɛCO2 :  Standardized CO2 fertilization 

effect, ɛAR :  Fraction preserved after autotrophic respiration, 

ɛRES :  Fraction preserved after effects omitted (drought, 

parasites ...). 

 

(Monteith, 1972 [34] ; Swinnen 

et al., 2017 [35]) 
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Anomaly = (Variable i - (Variable j) Mean) / Std 
(Variable j) (1) 

Variable i: is the value of the variable in time i, 
Variable j: is the average of the variable in time j, 

STD: is the standard deviation of the variable in 
time j. 

 

 

Fig 2. Workflow and remotely sensed data used in this study. 

 

 

3 Results 

 

3.1 Validation of FAPAR and DMP data 

Since absorbed active photosynthetic radiation 
fraction (FAPAR) and dry matter productivity 
(DMP) data from SPOT VEGETATION and 
PROBA_V pose estimation problems, an 
assessment and validation step has been essential. 
For this, averages of these FAPAR and DMP 
variables studied were re-sampled at 11 km, their 
digital values were retrieved and correlated with 
NDVI eMODIS values. To determine vegetation 
threshold, we used bibliographic studies and NDVI 
profiles for each site. According to (Minet et al., 
2015 [37]) actual value of NDVI giving threshold 
for vegetation detection is 0.1. Value 110 was 
chosen for maximum date of end growing season, 
being minimum values of vegetation and 5 the 

minimum variation between two decades. The 
numerical value (DN) is equal to  

 

 

 

 

 

 

1.1 / 0.01 = 50. The value 50 corresponds to the 
minimum value of vegetation and 5 correspond to 
the minimum variation between two decades 1.1 / 
0.1 = 5. In our study, based on the trend of NDVI, 
values of FAPAR and DMP are recovered by the 
following formulas (2 and 3): 

FAPAR = (DN * 0.01) (2) and DMP = (DN * 0.1) 
(3) 
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(Figure 3) shows a strong polynomial correlation 
between two variables FAPAR and DMP and NDVI 
with respectively (r² = 0.98, r² = 0.91) is more 
accurate than linear regression with (r² = 0.96, r² = 
0.88). FAPAR and DMP averages for February, 

March and April are correct, but their scale is high 
relative to NDVI values. 

 

 

Fig 3. Polynomial (degraded line, R² = 0.98 and R² = 0.91) and linear (continuous line, R² = 0.96 and R² = 0.88) 
correlation between CGLS-FAPAR and CGLS-DMP and eMODIS NDVI data from February to April during 

the period 2007-2017. 

 

3.2 Variability of averages of vegetation 
index and rainfall and Soil Moisture Index  

Analysis of annual averages comparison gives 
more detail on variability of vegetation indices, soil 
moisture and rainfall at the three study sites (Table 
2). An average rainfall of 18 mm is highlighted at 
Ain bni mathar, 17 mm at Tendrara and 12 mm at 
Bouarfa. The averages of the soil moisture index in 
Tendrara, Ain Bni Mathar and Bouarfa respectively 
are 19%; 16% and 14%. Mean trends in vegetation 
indices are similar to Ain Bni mathar and Bouarfa 
with 0.14 and 0.15 at Tendrara. According to 
analysis of averages, FAPAR and productivity at 
Ain bni mathar is equal to 0.09 kg / ha and 0.18 kg / 
ha; in Tendrara and Bouarfa values of FAPAR and 
DMP are 0.08 kg / ha and 0.16 kg / ha. 

Hydrological monitoring of surfaces relies on 
models that can predict water flows in space and 
time (Figure 4). Soil moisture index depends on 
flow of material, evaporation, infiltration and soil 
runoff. Estimates of monthly averages from 2007 to 
2017 indicate trends of actual rainfall, soil moisture 

index and vegetation indices of the three rural 
communes of Ain bni mathar, Tendrara and 
Bouarfa. The correlation between pixel values of 
SWI images and rainfall is well established between 
September and October; between November and 
December and between March and April. 

Nevertheless, rainfall values and indices of soil 
moisture and vegetation varied from year to year. 
For the three areas studied, index values were 
relatively high in 2008-09, 2009-10, 2012-13, 2013-
14, 2014-15, 2015-2016, 2016-17 and lower in 
2007-08 and 2010-11. During drought years NDVI, 
FAPAR are low. While high DMP in Bouarfa shows 
that this productivity of dry matter corresponds to 
vegetations indicative of degradation which resist at 
extreme conditions. 

The results of comparison of rainfall trends and 
vegetation indices show that station data and 
satellite images can be used as reliable data but with 
verification of FAPAR and DMP scales. Since index 
of soil moisture is dependent on interaction of 
vegetation. It is noted that this soil moisture 
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decreased in February regenerates rapidly with the 
growth of vegetation in March and April. The 
steppe of Ain bni mathar Stipa tenacissima is often 
associated with Noaea mucronata, Peganum 
harmala, Atractylis serratuloids, Atractylis humilis, 
Artemisia herba-alba and Lygeum spartum. This 
stony mixed steppe is mainly located on glacis and 
slopes where crusts and calcareous slabs with low 

permeability more or less stability condition of soil 
moisture index. Nevertheless tendrara at mixed 
steppes degraded dominated by Anabasis aphylla. 
Desert steppes of Fredolia aretioids and Haloxylon 
scoparium in Bouarfa colonize mostly horizontal 
plateaus and depressions with loamy or silty-clay 
soils. Due to this diversity of steppe ecosystem, a 
high variability of soil moisture has been observed.

 

SITE  Variable  MEAN MIN MAX Std Dev CV 

  SWI 16.1 3.22 55.2 10.1 62.7 

  NDVI 0.14 0.1 0.3 0.05 39.1 

S1 FAPAR 0.09 0.02 0.75 0.11 119.3 

  DMP 0.18 0 1.3 0.18 102 

  Rainfall 17.8 0 111 19.9 112 

     

 

 

 

 

 

 

 

 

 

  SWI 18.6 7.17 39.8 6.47 34.8 

  NDVI 0.15 0.12 0.28 0.02 16.2 

S2 FAPAR 0.08 0.02 0.69 0.09 109.4 

  DMP 0.16 0 1.19 0.15 92.8 

  Rainfall 17.2 0 116 22.2 129 

     

 

 

 

 

 

 

 

 

 

  SWI 13.9 2.86 24.8 4.89 35.1 

  NDVI 0.14 0.12 0.24 0.02 15.5 

S3 FAPAR 0.08 0.02 0.4 0.06 73.47 

  DMP 0.16 0 0.83 0.12 73.6 

  Rainfall 12 0 135 20.7 173 

Table 2. Comparison of monthly average rainfall, soil moisture, NDVI, FAPAR and DMP for the three sites 
(S1: Ain Bni Mathar, S2: Tendrara, S3: Bouarfa) from September 2007 to 2017. 
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Fig 4. Monthly trends of vegetation indices, rainfall and soil moisture (SWI) at the three sites (S1: Ain Bni  

Mathar, S2: Tendrara, S3: Bouarfa) between 2007 and 2017. 

3.3 Variability of averages anomalies of 
vegetation index and rainfall and Soil 
Moisture Index 

Soil moisture plays an important role in 
maintenance of life on earth; its first use is to allow 
growth of vegetation. It also conditions the 
establishment of plant stand. Its evaluation is 
therefore important in hydrology and agronomy, and 
is a warning parameter for drought. In semi-arid 
areas, it seems logical that soil moisture anomaly 
thresholds are equal to rainfall and vegetation index 
anomalies. Figure 5 shows average of anomalies 
calculated between 2007 and 2016 in the three 
pastoral zones of Eastern Morocco. In Ain bni 
mathar and Tendrara, negative anomalies of rainfall 
and NDVI, FAPAR, DMP are visible in 2010, 2011, 
2013 and 2014. In 2007, 2009 and 2015 rangeland 
conditions are relatively stable. Precipitation 
anomalies do not correspond to SWI anomalies in 
2013 in Ain bni mathar. In Bouarfa rainfall 
anomalies and NDVI, FAPAR, DMP are perfectly 
correlated. While these anomalies are in contrast 
estimated with respect to anomalies of soil moisture 
index. 

Serious negative NDVI, FAPAR and DMP 
anomalies were observed between 2009 and 2011, 
with very poor growth conditions observed for these 
rangelands in Morocco. Normal growing conditions 
are observed in 2014-2015. Runway vegetation 
anomalies in early spring (February to April) mainly 
reflect soil moisture anomalies for winter period 
(November to February). During dry years, negative 
anomalies can be observed for all types of 
hydrological variables and vegetation. Years of 
relatively good vegetation are characterized by 
higher water conditions in winter. 

 The discrepancies between SWI anomalies are 
other variables are also present in Bouarfa; we 
observed negative SWI abnormalities and absence 
of NDVI, FAPAR, DMP abnormalities and rainfall. 
The reason for this disagreement can be explained 
by good temporal distribution of rainfall. In fact, 
temporal distribution of precipitation can be 
significant as a total amount to determine vegetation 
development. Therefore, even if accumulated soil 
moisture was low, this anomaly eventually led to a 
normal development of vegetation.
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Fig 5. Result of rainfall (September to March), vegetation indices (February to April) and soil moisture 
(November to February) anomaly at the three sites (S1: Ain Bni Mathar; S2: Tendrara, S3: Bouarfa) between 

2007 and 2017.
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3.4 Correlation between vegetation indices 
and soil moisture index 

Assuming that soil moisture index is dependent 
on both soil texture and vegetation typology, this 
will allow description of conditions in three study 
areas. The spatial and temporal variability of soil 
moisture proves that soils studied are diverse and 
rich in borer, limestone, sand and organic matter. 

According to Figure 6, a strong correlation 
between SWI (November to February) and NDVI, 
FAPAR and DMP at Ain bni Mathar with (R² = 
0.66, R² = 0.90, R² = 0.92) is encouraging to 
estimate vegetation indices from index of soil 
moisture is aimed towards that. On the other hand, 

at two sites (Tendrara and Bouarfa), very weak 
correlations are observed between SWI and NDVI, 
FAPAR and DMP respectively with (R² = 0.24, R² = 
0.22, R² = 0.28) and (R² = 0.24, R² = 0.18, R² = 
0.22). From these results it can be confirmed that 
SWI index reflects soil typology of areas studied. 
The SWI index is unable to estimate soil moisture in 
areas similar to Tendrara and Bouarfa where 
vegetation is low and soil is sandy in nature. 

The aspect on relationship between vegetation 
and soil moisture from November to February is 
strongly established in Ain Bni mathar, while the 
accuracy of the polynomial regression is not 
established for low values of vegetation indices in 
Tendrara and low soil moisture in Bouarfa.

 

 

 

Fig 6. Polynomial regression between NDVI, FAPAR and DMP vegetation indices (February to April) and soil 
moisture (November to February) at all three sites. 
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3.5 Correlation between vegetation indices 
and rainfall 

The results of Figure 7 are very promising for an 
estimation of vegetation index, photosynthetic 
fraction and dry matter productivity from rainfall 
stations in the three study areas. Polynomial 
correlations are perfectly established between NDVI 
and rainfall with (R² = 0.73, R² = 0.94, R² = 0.89) 

respectively at Ain Bni mathar, Tendrara and 
Bouarfa. Correlations between FAPAR and rainfall 
in these sites are respectively (R² = 0.88, R² = 0.97, 
R² = 0.92). While relationship between rainfall from 
September to March and DMP is expressed with (R² 
= 0.90, R² = 0.95, R² = 0.95). In general rainfall data 
derived from station are very well correlated with 
vegetation indices; we can say that means of 
satellite data are also very well correlated. 

 

  

 

Fig 7. Polynomial correlation between rainfall (September to March) and NDVI, FAPAR and DMP vegetation 
indices (February to April) at the three sites. 

 

 

4 Discussion  

Before starting any study verification of data put 
in analysis is an essential step. For drought study in 

pastoral areas for example and if we chose to 
analyze between two types of field data and remote 
sensing space we must compare, criticize and justify 
different results obtained. Observations of soil 
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moisture are in principle a more efficient and robust 
means of quantifying availability of water. Soil 
moisture from passive remote sensing has large 
errors in areas of high vegetation density (Parinussa 
et al., 2011 [38]). Therefore, at semi-arid or arid 
regions, soil moisture index is more reliable for 
assessing relationships between soil moisture and 
vegetation (Chen, 2014 [3]). The results clearly 
confirm that SWI can be used as an indicator of 
quality of precipitation estimates at regional scale 
and allow rapid detection of major overestimates 
and underestimates of precipitation data examined. 
According to the literature, availability of soil 
moisture depends on soil structure, vegetation type 
and climatic conditions. 

But most research describes soil moisture index 
only in terms of soil texture by comparing in situ 
and satellite-measured data. Velpuri et al., 2016 [39] 
conducted a direct and qualitative comparison of 
measured and in situ soil moisture to describe 
severity of drought in grasslands. For example, 
NDVI, FAPAR and DMP derived from remote 
sensing have been used in vegetation monitoring 
and pasture yield prediction (Kogan et al., 2013 
[20], Doraiswamy et al., 2003 [21], Prasad et al., 
2006 [22], Duveiller et al., 2012 [23]), Diouf et al., 
2014 [40], Diouf et al., 2015 [41], Garba et al., 2012 
[42]) showed that there is a close relationship 
between dry matter productivity (DMP) and pasture 
biomass. Previous studies have also shown that 
FAPAR values are slightly higher for hardwood in 
winter, at higher latitudes and may lead to some 
overestimation and cloud and snow contamination 
limits reliability of reflectances used as input into 
forest. The algorithms (Fang et al., 2013 [43], 
Claverie et al., 2013 [44], Chen 1996 [45], Chen, 
2014 [3]). This proves that remote sensing data also 
have their inherent drawbacks.  

Based on spatial and temporal analysis of remote 
sensing data, we have retained advantages and 
disadvantages from perspective of this study on the 
use of spatial data in arid and semi-arid grazing 
areas. Soil moisture index SWI is significant and 
proves that it depends on nature of soil and presence 
of vegetation; it is sensitive to absence of vegetation 
in degraded areas. Since there are significant errors 
in areas of high vegetation density according to 
(Parinussa et al., 2011 [37]) and reliable in arid and 
semi-arid zones according to (Chen, 2014 [3]) it 
saturates in strictly arid zones similar to Tendrara 

and Bouarfa located in East of Morocco. FAPAR 
and DMP require a correction of scale compared to 
NDVI. However the latter is perfectly reliable in 
drought study in Moroccan rangeland. 

 

5 Conclusions 

The evaluation of remote sensing data is usually 
done in relation to field data. Two other steps seem 
important which is processing of earth observation 
data from series of images; and statistical analysis 
through creation of a regression model between 
spatial data and those measured in field. Spectral 
profile model aims to synthesize biological 
knowledge functioning of pastoral ecosystems and 
physical parameters of spectral response of plant 
cover. Nevertheless, this type of model must be 
tested and probably improve in different conditions 
and types of vegetation cover. 
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